Une puce quantique photonique de 49 qubits et une nouvelle solution

Gratuit
Recevez toutes nos informations et actualités par Email.
Entrez votre adresse email :

Pour booster la puissance des systèmes de calcul quantique analogiques

Le 18 mai 2018, par Christian Olivier, Chroniqueur Actualités
En dépit des progrès importants réalisés dans le domaine de l’informatique quantique, l’avènement de machines quantiques capables de surpasser et de remplacer les ordinateurs classiques dans des opérations de calcul bien spécifiques reste encore un défi.

Actuellement, on distingue principalement deux types de systèmes informatiques quantiques (SIQ) : les SIQ classiques et les SIQ adiabatiques. Les partisans de l’approche favorable aux SIQ classiques cherchent à mettre au point un ordinateur quantique « universel », dont les qubits peuvent être traités en utilisant les mêmes principes qui ont fait leurs preuves avec des dispositifs numériques conventionnels. Les promoteurs de l’approche favorable aux SIQ adiabatiques cherchent à mettre au point un ordinateur quantique dont le fonctionnement se rapproche des ordinateurs analogiques du milieu du siècle passé (1940-1970), qui nécessite la création d’algorithmes bien spécifiques. Un calculateur analogique permet d’effectuer toutes les opérations en parallèle. Les ordinateurs analogiques ont été spécifiquement conçus pour résoudre des systèmes d’équations différentielles et travailler sur des variables continues.

Dans le cadre d’une étude portant sur l’informatique quantique, des chercheurs chinois ont démontré qu’il est possible de concevoir une « marche quantique » (quantum walks) bidimensionnelle de photons individuels dans un « espace spatial réel » en exploitant la géométrie externe des réseaux d’évolution, plutôt que le degré interne de libertés des photons.

Soulignons au passage que les marches quantiques sont les équivalents quantiques des marches aléatoires classiques. Ces marches permettent de simuler l’évolution à temps discret d’une particule quantique sur un graphe, mais aussi, de concevoir de nouveaux algorithmes quantiques.

La puissance quantique est fortement liée aux caractéristiques, notamment spatiales, des marches quantiques. Il est possible de faire varier cette puissance quantique en jouant, par exemple, sur le nombre de photons. Mais cette méthode occasionnerait, selon les chercheurs chinois, la génération probabiliste de photons individuels ainsi qu’une perte multiplicative.

Cette étude a prouvé que la dimension et la taille d’un système quantique pouvaient être exploitées comme de nouvelles ressources afin de stimuler la puissance de calcul quantique. Par conséquent, il est possible d’accroitre les dimensions physiques externes et la complexité d’un système quantique analogique sans forcément recourir à l’augmentation du nombre de photons.

Les scientifiques chinois ont également présenté une puce photonique quantique tridimensionnelle de 49 qubits qui a été mise au point grâce à une technologie de gravure directe exploitant un laser femtoseconde. Ce laser a la particularité de produire des impulsions ultra-courtes dont la durée est de l’ordre de quelques femtosecondes à quelques centaines de femtosecondes, ce qui correspond à l’ordre de grandeur de la période d’une onde électromagnétique du visible. Jin Xianmin, chercheur en communication quantique de l’Université Jiaotong de Shanghai, qui a dirigé cette étude, a confié qu’il s’agit de la plus grande puce de ce type présentée à ce jour.

Les ordinateurs quantiques analogiques seraient plus faciles à mettre au point que leurs homologues universels puisqu’ils sont moins tributaires de l’intégration de système de correction d’erreur viable et fiable. De ce fait, ils pourraient constituer un compromis intéressant entre le besoin de solutions de calcul performantes basées sur l’informatique quantique et les limitations imposées par les systèmes de calculs traditionnels actuels.

Par ailleurs, le concept de la suprématie quantique, si chère à Google, pourrait être plus rapidement exploré et éprouvé sur une plateforme similaire exploitant des modèles de calcul quantique analogique comme l’échantillonnage de Boson en attendant l’avènement des systèmes quantiques universels.

Les résultats de cette étude ont été publiés dans la revue Science Advances. Ces travaux devraient contribuer à stimuler le développement de l’informatique quantique analogique et de nouvelles tâches de calcul quantique.

Source : developpez.com

  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »